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Diffraction of surface waves on an incompressible fluid 

By W. E. WILLIAMS 
Department of Applied Mathematics, Liverpool University 

(Received 26 October 1964) 

The problem considered is that of the diffraction of the field of a point source 
in a fluid of infinite depth by an infinite vertical cylinder. It is shown that the 
surface wave component of the velocity potential may be expressed in terms of the 
solution to a classical electromagnetic (or acoustic) diffraction problem. 

1. Introduction 
The present paper examines the problem of the diffraction of the field of a 

periodically pulsating point source in a fluid of infinite depth by a vertical cylinder 
S extending from a finite distance above the fluid surface to an infinite distance 
below it. (Small amplitude oscillations only are considered.) For the particular 
case when the cylinder is an infinitely thin half plane solutions have been ob- 
tained by Voit (1961) and Levine (1963). The analysis of both papers is rather 
complicated but the final form of Levine’s solution is comparatively simple. In  
particular he shows that the surface wave component of the velocity potential 
can be expressed in terms of the solution of the problem of the diffraction by the 
half plane of the field of a magnetic (or acoustic) line source parallel to the edge. 
The general relationship between problems of electromagnetic diffraction and 
those of diffraction of water waves is of course well known (cf. Wehausen & 
Laitone 1960), but the particular relationship derived by Levine seems to be 
new. 

I n  the present work conventional elementary transform methods are em- 
ployed to obtain the solution in a form similar to that given by Levine for the 
half-plane problem. A generalization of Levine’s result concerning the surface 
wave component is obtained, namely that this component arises entirely from 
a function which is the solution of a particular electromagnetic diffraction 
problem. The relevant problem is that of the diffraction of the field of a magnetic 
(or acoustic) line source by an infinite cylinder whose generators are parallel to 
the line source and whose cross-section in planes normal to the generators is 
identical with that of S. 

2. Detailed formulation and solution of the problem 
A Cartesian co-ordinate system Ozyz is chosen with its origin in the mean free 

surface and such that the fluid occupies the region z 3 0. The diffracting object 
is assumed to be a rigid cylinder S of uniform cross-section whose generators are 
parallel to the z-axis and which extends from some finite distance above the mean 
free surface to an infinite distance below it. The curve bounding a section of X 
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in planes normal to the z-axis will be denoted by C. It is assumed that the exciting 
field is due to a point source at (zo, yo, zo). The velocity potential describing the 
motion will be defined by q5e-z'ot, where 

v2q5 = - 6(x - zo) S(y -yo) 6(z - zo). (1) 

The normal derivative of $(aq5/an) on S has to vanish and on z = 0 we have that 

a $ p z  = -k$, k = w2/g. 

q5 has to tend to zero as z becomes infinite and also to represent a disturbance 
travelling away from 8. 

The boundary condition on z = 0 is similar to one occurring in heat conduction 
problems and it thus seems appropriate to attempt a solution by employing a 
transform mefhod used in the solution of these latter problems (Churchill 
1958). The appropriate transform @ is defined by 

( - k sin az + a cos az) q 5 ( q  y, z)  dz. (2) 

For k negative equation (2) has a unique inverse given by q5 = 9@, where the 
operator 9 is defined by 

For positive k, however, it follows by direct manipulation that 

.Y@ = q5 - 2kJOm e-k(z+oq5(x,y, t )  dt, (3) 

and it thus follows immediately from equation (3) that for k positive the inverse 
of equation (2) is 9@ +f(x, y) e-kz where f is an arbitrary function. 

It follows from equation (1) by conventional transform methods that @ is 
equal to (k sin azo - a cos az,) $(x, y, a), where 

The conditions to be satisfied by q5 are clearly satisfied if we determine a solu- 
tion $ of equation (4) with a$/an = 0 on C and $ --f 0 as (z2 + y2)* -+ 00. This 
boundary-value problem for + is of a classical type and a solution is known in 
closed form for some particular curves C (e.g. circle, semi-infinite line, sector). 

Inversion now gives 

m 
cos a(z - zo) + cos a(z + zo)] $@, y, a) da 

The first integral in equation (5) is clearly the solution # of equation (1) for the 
particular case k = 0 and hence, if G(x ,  y, z )  denotes the solution of equation (1) 
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with a#/& vanishing on an infinite cylinder which intersects planes normal to the 
z-axis in a curve C, it follows that 

[k cos 01(x + 2,) + 01 sin (z + z,)] $-da 
k2 + a2 

+f(x, y) e-kz. # = G(Z7 Y, 4 + G(% y, - 2) + 7 

It now follows from equations (l), (4) and (6) thatfis  equal to - 2ke-kz",(x,y), 
where 

The function x is to represent an outgoing wave as (x2 + y2)* -+ co and ax/an is to 
vanish on C. This boundary-value problem for x is a classical one in diffraction 
theory and a solution is known for particular cases of C. In  the notation of 
electromagnetic theory x represents the total magnetic field component in the x 
direction in the region external to an infinite conducting cylinder of cross-section 
C when the incident magnetic field is due to a magnetic line source at (s,,y,) 
such that its magnetic field in free space is - &iHLa)[k{ra + r i  - 2rr, cos (8 - 8,)}9], 
where x = r cos 8, y = r sin 8, Z, = r, cos 8,, yo = r, sin O0. 

Though the general form of the velocity potential in equation (6) is rather 
complicated, it is possible to deduce significant results from it concerning the 
surface wave component of the fluid motion. The terms involving (2 are purely 
static, the integral in equation (6) tends to zero exponentially as r -+ 00 and 
thus the surface wave component for large r arises entirely from the term involv- 
ing x .  It follows from electromagnetic diffraction theory that as r -+ 00 

x N (2/nkr)*exp {i(kr - &r)] A(ro, 8, So), 

where A is known as the far field amplitude of x. If we now assume that ro -+ co, 
i t  follows from the reciprocity properties of the Green's function that 

x - ( 2/nkr0)) exp (i(kr,  - an)} A(r, 8, 6,). 

Thus on letting r, become infinite in the expression for the incident field it follows 
that A(r, 8,8,) is the total magnetic field at the point ( r ,  8) due to the incident 
plane wave ai exp {ikr cos (8 - So)}. Thus the amplitude of the surface wave term 
is directly related to the solution of a plane wave diffraction problem and for 
certain particular curves C a considerable amount of information is available 
concerning the solution of such problems (cf. Jones 1964, ch. 8, 9). A further 
simplification occurs if r, is large; we then have that 

to plane wave exp {ikr cos (8 - So)> 1 ' solution of diffraction problem due x - $( 1/277kr0)4 exp { - i(kr, + 3n/4)} x 

Thus in this case the far field behaviour of x is directly related to the far field 
behaviour of the solution of a plane wave diffraction problem. For the particular 
case when C is (a) a circle of radius a, ( b )  the parabola -y2 = 2,5fx-g;, and (c)  a 
line of width b, explicit forms are known for the far field pattern of the plane wave 
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diffraction problem for large and small values of the parameters ka, kb, kg,, 
(cf. Jones 1964; Seshadri 1959). 

We shall examine in slightly more detail the particular case when C is the 
infinite sector of angle m7c. The exact solution x for this problem is known (Jones 
1964) and x will consist of two parts one of which arises from the incident and 
reflected fields (i.e. the terms of geometrical optics) and the other is a diffracted 
term (i.e. an edge effect term). It may be deduced immediately from the known 
form of x that as r ,  r0 -+ co the contribution of the diffracted term to q5 is given 
near the surface by 

1. (8) X [cos(n/m) -oos~(s-Bo)/m)+cos (~/m)-cos((2n+8+B0)/m) 
1 1 

For m = 2 equation (8) can, when notational changes are taken into account, 
be identified with a corresponding result given by Voit. 
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